
J. Phys. A: Math. Gen. 23 (1990) 3603-3611. Printed in the U K  

Dissipation by identical oscillators 

Michael Wilkinsont 
Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA 

Received 19 February 1990 

Abstract. This paper considers a microscopic model for dissipation, in which a degree of 
freedom X is coupled to a large number of identical microscopic oscillators (typically 
non-interacting fermions in a potential well). The motion of the coordinate X causes 
irreversible excitation of the gas of oscillators, which can be observed as a dissipation of 
the motion of this coordinate. The rate of dissipation depends drastically on whether the 
classical motion of the oscillators is regular or ergodic. A possible experimental demonstra- 
tion of this effect is discussed. 

1. Introduction 

The mechanism of dissipation, the irreversible conversion of work into heat, is always 
the transfer of energy from a small number of observed coordinates into a large number 
of unobserved microscopic degrees of freedom. Often the microscopic degrees of 
freedom are modelled by a bath of dissimilar harmonic oscillators, with a continuous 
distribution of frequencies (see, e.g., Caldeira and Leggett 1981); this model is appropri- 
ate for many systems in which the microscopic degrees of freedom are bosons. In this 
paper, a different model is considered: the microscopic degrees of freedom are identical 
and independent, but can have arbitrary dynamics. In both of the applications discussed 
below, these degrees of freedom are weakly interacting fermions confined in a potential 
well. The independent-particle picture is natural for fermion systems at low tem- 
peratures, because the low-energy excitations can be modelled as independent quasipar- 
ticles (Pines and Nozieres 1966). The principal result of this paper is to point out that 
in this model the rate of dissipation is drastically reduced if the motion of the 
microscopic oscillators is regular, compared with similar systems exhibiting chaotic 
motion. The possibility of observing this effect in the absorption of radiation by small 
conducting particles is discussed. 

The observable degree of freedom will be denoted by X ,  and it appears as a 
parameter in a classical Hamiltonian H ( q ,  p ;  X )  describing the microscopic degrees 
of freedom. It will be assumed that the rate of change of X is slow compared with 
the characteristic timescale of the motion of the individual oscillators, i.e. the variation 
of X is assumed to be adiabatic. The dissipation is characterised by calculating the 
irreversible component of the rate of change of the energy of the gas of microscopic 
oscillators. By conservation of energy, this energy is lost from the motion of the 
observed degree of freedom. 
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Figure 1. An example of the type of system being considered. A billiard is filled with a 
gas of non-interacting fermions. The shape of the billiard depends on a parameter X ,  which 
varies as a function of time, causing an irreversible increase in the energy of the gas. This 
results in the dynamics of the coordinate X being dissipative. 

An example of the type of system considered is illustrated in figure 1. A gas of 
particles is enclosed inside a wall, which can undergo a deformation described by a 
coordinate X .  The motion of the gas particles is ballistic, i.e. the mean free path is 
assumed to be larger than the size of the enclosure. In the language of dynamical 
systems the gas is a system of billiards. It is well known that smooth-walled billiards 
can exhibit either regular or chaotic motion depending on the shape of the boundary 
(Berry 1976). Our object is to understand how this affects the ability of the gas to act 
as a dissipative medium. 

One physical application of this billiard model is as an extension of the liquid-drop 
model of the nucleus to include the damping of the collective degrees of freedom by 
‘nuclear viscosity’ (Hill and Wheeler 1952, Koonin and Randrup 1977, Blocki et al 
1978). The billiard model is thought to be reasonable because two-body scattering of 
quasiparticles within the nuclear fluid is inhibited by the fact that the effective tem- 
perature is low. The dynamics of the collective coordinate X describing the deformation 
of the nuclear fluid droplet are determined by inertial forces due to the bulk motion 
of the fluid when the drop is deformed, conservative forces involving surface tension 
and Coulombic repulsion, and a viscous force obtained by dividing the rate of dissipa- 
tion by the velocity. 

Another, closely related, physical application is to the absorption of electromagnetic 
radiation by small conducting particles. Here we assume that the particles are smaller 
than the bulk mean free path of the charge carriers, and that the frequency of 
the radiation is low compared with the frequency with which the particles collide 
with the wall. The coordinate X is the electric or magnetic field of the radiation: 
instead of deforming the wall, we are now altering the dynamics within the 
enclosure. 

To calculate the rate of dissipation we must estimate the change in the energy of 
the particles when the Hamiltonian is changed adiabatically. Integrable and chaotic 
Hamiltonian systems behave very differently in this respect, and will be discussed 
separately. Both integrable and chaotic systems have adiabatic invariants, and for each 
type of system the energy can be expressed as a function of the adiabatic invariants, 
which are functions of the parameter X .  Irreversible effects are therefore associated 
with corrections to the adiabatic invariants due to the finite rate of change of the 
parameter X .  
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2. Ergodic systems 

First we discuss the case of ergodic systems in detail. The adiabatic invariant p is the 
phase space volume of the energy shell: 

p = 1 dq 1 dp f i ( H ( q ,  P; X) - E ( X ) )  ( 1 )  

(for a derivation, see Ott (1979)). The constancy of p determines the dependence of 
the energy of an oscillator E on the parameter X. This relationship therefore gives a 
contribution to the potential energy function for the coordinate X due to its coupling 
to the N oscillators. The leading-order term in the corrections to the adiabatic invariant 
has been calculated by Ott (1979), who showed that the differences AE between the 
actual energies of the particles and the energy predicted by the adiabatic invariant (1) 
increase diffusively 

where the diffusion constant is proportional to the integral over time of the correlation 
function of the generalised force aH/dX:  

(AE2) = 2Dt ( 2 )  

D = E [ z  2R -a d t C ( E , t )  

In equation (4), Q( t )  is shorthand for the coordinate reached by evolving Hamilton’s 
equations for time t starting at (4 ,  p) ,  i.e. Q( t )  = Q(q ,  p, t), and R is the weight of the 
energy shell at energy E :  

R ( E ) = l d y l d p s ( H ( q , p , X ) - E ) .  ( 5 )  

The diffusion of particle energies can be related to the irreversible component of 
the power supplied to the oscillators. The gas of oscillators is characterised by their 
phase-space density, p(q,p, t ) .  Initially, p is assumed to be a function f ( E )  of the 
energy E = H ( q ,  p, X). Although the time-evolution of p is extremely complex, a 
coarse-grained average of p depends only on the energy at any given time, and this 
average f ( E ,  t )  satisfies the diffusion equation with drift 

where D is the diffusion coefficient given by (2) and d E / d X  is the rate of change of 
the energy of a particle implied by the adiabatic invariant (1). The energy of the system 
of oscillators is given by 

02 

El-= d E  N E ,  X ) f  ( E ,  t)E (7) 

so that the rate of change of the energy of the system is 
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The first term in this expression represents a reversible change in the energy of the 
system, and the second term represents the irreversible dissipation of energy into the 
bath of oscillators. Note that this dissipation is viscous or ohmic (force cc velocity), 
because the diffusion coefficient D is proportional to the square of the velocity. 

If the system of particles which act as the dissipative medium is a gas of fermions 
with an effective temperature which is low compared to the fermi temperature, then 
the phase space densityf( E )  decreases rapidly from 1/ h d  to zero in the neighbourhood 
of the fermi energy EF (where h is Planck's constant and d the number of degrees of 
freedom of each individual oscillator). In this case the rate of dissipation reduces to 
the simple expression 

where the subscripts F indicate that quantities are evaluated at the Fermi energy. The 
physical interpretation of this result is that the diffusion of the distribution function 
f ( E ,  t )  causes the occupation probability of states above the Fermi energy to be 
increased at the expense of states below EF, resulting in an irreversible increase in the 
energy of the Fermi gas. It may be thought that if the particles are fermions, the Pauli 
exclusion principle would inhibit the diffusion of the particle energies. This does not 
happen, however; it is simple to show that the evolution of a system of N non-interacting 
fermions is given exactly by a Slater determinant of N independently evolving one- 
fermion wavefunctions, so that the Pauli principle cannot inhibit the diffusion of 
particle energies. 

The appendix describes the results of numerical simulations which verify the 
relationship (9) between the diffusion of energy and the rate of dissipation. 

3. Integrable systems 

If the motion of the particles forming the dissipative medium is integrable, with motion 
confined to tori in phase space (Berry 1976), a different form of the adiabatic theorem 
is applicable. In the case of integrable motion with d degrees of freedom the adiabatic 
invariants are the actions 

where the C, are the d irreducible circuits around the torus, and the energy can be 
expressed as a function of these adiabatic invariants: E = H ( I ;  X ) .  Dissipation must 
therefore be associated with corrections to the adiabatic invariants. 

These corrections are much smaller than in the case of ergodic motion: for a generic 
perturbation of a one-freedom (necessarily integrable) system the irreversible com- 
ponent of the corrections to the adiabatic invariant (10) vanishes faster than any power 
of the velocity (Lennard 1959), provided X ( t )  is an analytic function, and that the 
trajectory does not cross a separatrix as X varies (Hannay 1986). The irreversible 
corrections in fact usually vanish exponentially 

A I  = B exp(-A/X) (11) 
where A is independent of X,  and B may have a power-law dependence on X. 
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For integrable systems with more than one degree of freedom the accuracy of the 
adiabatic invariants is a delicate matter. If the system is integrable by separation of 
variables in the same coordinates system for all X ,  then (11) remains valid. In the 
general case of a one-parameter family of integrable systems, the adiabatic invariants 
are susceptible to irreversible changes if a particle is on a resonant trajectory. When 
there are no separatrices, however, the irreversible rate of change in the energy of the 
gas still vanishes more rapidly than X 2  as X + O .  

Integrable systems are a special case, but many systems are quasi-integrable, with 
a mixture of regular motion, with trajectories on KAM tori, and regions where the 
motion is chaotic (see, e.g., Berry 1976). It is clear that in these cases there will be 
some ohmic dissipation associated with the chaotic regions. 

The appendix describes the results of numerical experiments which show that the 
irreversible changes in energy are much smaller in integrable or quasi-integrable systems 
than in a comparable ergodic system, in the adiabatic limit. 

4. Possible experiments 

Now let us consider the possibilities for an experimental realisation of the effect of 
the classical dynamics on the rate of dissipation. A test involving the application to 
the problem of nuclear dissipation would be very difficult, because of the complexity 
of the system and the difficulty of controlling the parameters of the experiment. A 
much more straightforward application of the model may be to the absorption of 
low-frequency electromagnetic radiation by electrons confined within small conducting 
particles: the electric or magnetic field of the radiation plays the role of the slowly 
varying parameter X .  

To perform experiments relevant to this model several criteria must be met. In 
order for the dynamics to correspond to that of a classical billiard, the bulk mean free 
path should be much greater than the size of the particles, and the surface should be 
smooth enough to give specular reflection (a criterion for this is that the surface 
roughness be much less than the inverse of the Fermi wavevector). In order for the 
adiabatic theory to apply, the time taken for an electron travelling at the Fermi velocity 
to cross the particle should be much less than the period of the radiation. Because the 
absorption increases as the square of the frequency, its detection is easier at high 
frequencies, which implies that the particles should be very small if the adiabatic 
condition is also to be satisfied. It must also be possible to prepare particles with both 
chaotic and integrable dynamics which are comparable in all other respects. 

It may be possible to satisfy the above criteria in the following experiment: a very 
fine metallic powder is embedded in a non-conducting inert substrate, with a lower 
melting point than the metal. The particles in the powder would have irregular shapes, 
so that the motion of electrons within them would be chaotic. After measuring the 
absorption of the sample, it would be heated to melt the metallic particles, which 
would re-solidify as nearly spherical crystallites. Because the sphere is an integrable 
billiard, the absorption of the sample should then be greatly reduced, and scattering 
from impurities will be the dominant mechanism of dissipation, rather than scattering 
off the walls. The absorption coefficient would be decreased by (approximately) the 
ratio of the size of the particle to the bulk mean free path. 

Bismuth may be a suitable substance for performing this experiment: it is a 
semi-metal, with a low carrier density (lO-’/atom), so that the Fermi energies of the 
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electrons and holes are small (around 20 MeV, four pockets), with nearly ellipsoidal 
Fermi surfaces (Lerner 1962). The highest effective mass is around m* = 1.2 and the 
lowest is around m* = 0.005 (in units of the bare electron mass). These values lead to 
a smallest Fermi wavelength of approximately 75 A, implying that surface irregularities 
can be many atomic diameters before they have any effect on the dynamics of the 
charge carriers. The smallest Fermi velocity is approximately 8 x lo4 m s-’, implying 
that if the experiment were done with particles of size lo-’ m, at a frequency of 10 GHz, 
the adiabatic criterion would be satisfied. This particle size is smaller than the bulk 
mean free path in Bismuth (approximately m, as estimated from the resistivity of 
3.5 x lo-’ a m  at 77 K). Because the Fermi surfaces are ellipsoids, the dynamics of the 
carriers in the spherical particles are equivalent to ellipsoidal rather than spherical 
billiards, but this makes no difference to the prediction because ellipsoidal billiards 
also have integrable dynamics. 

Another possibility for an experimental system would be to use lithographic tech- 
niques to divide a surface holding a two-dimensional electron gas into regions with a 
precisely controlled shape, corresponding to billiards with known dynamics. The Fermi 
wavelength in these systems can also be very large, so that the effects of surface 
roughness can be suppressed. 

5. Discussion 

An expression for the rate of dissipation which is essentially equivalent in form to (8) 
or (9) can also be derived using classical linear response theory (see, e.g., Koonin and 
Randrup 1977). The advantages of the approach described in this paper are that it is 
not confined to small perturbations of the Hamiltonian, and that it shows clearly that 
the rate of dissipation is much lower if the classical motion of the oscillators is integrable. 

The crucial difference between the problem considered here and the damping by 
harmonic oscillators considered by Caldeira and Leggett (1981) is that they consider 
a bath of harmonic oscillators with a continuous spectrum of frequencies: there are 
low-frequency oscillators which are not being driven adiabatically, and it is these which 
are responsible for the damping in their model. 

All of the considerations above are based on a semiclassical model, and it remains 
to consider whether quantum mechanical effects will be significant. The model assumes 
that semiclassical considerations are valid for the static problem, and that the variation 
of the parameter X is not so slow that the quantum adiabatic theorem (Bohm 1951) 
applies, rather than the classical one. Semiclassical models give a good description of 
the static problem if the Fermi wavelength is small compared with the size of the 
system. In the quantum adiabatic regime, Landau-Zener transitions at values of X 
where pairs of energy levels become nearly degenerate (termed ‘avoided crossings’) 
are the only potential mechanism for irreversibility (Wilkinson 1988). The difference 
between the response of ergodic and integrable systems persists into the quantum 
adiabatic regime: in an integrable or quasi-integrable system, the gaps in the avoided 
crossings between energy levels are exponentially small (Wilkinson 1987). This implies 
that the probability of making a Landau-Zener transition is almost exactly unity, so 
that in these systems the transitions are almost exactly reversible on reversing the 
change in X .  

In conclusion, this paper has given a simple expression for the rate of dissipation 
by a system of slowly driven identical oscillators with ergodic classical motion (9), 
and has pointed out that the rate of dissipation is drastically reduced if the classical 
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motion is integrable. This model is relevant to the damping of collective motions in 
the atomic nucleus, and the absorption of low-frequency electromagnetic radiation by 
very small conducting particles. The parameters of the latter system can be controlled 
easily, and an experiment has been proposed which might provide a demonstration 
of the different rate of absorption for integrable and chaotic motion. 
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Appendix 

This appendix describes some numerical experiments which verify the connection 
between dissipation and the diffusion of particle energies for an ergodic system, and 
which illustrate the dramatic difference between the chaotic and the integrable cases. 

H,=4(P2\+P:)+V,(X,Y,X) (A.la)  

v, = x 2 y 2 + & ( l  + X ) ( x 2 + y 2 )  ( A . l b )  

v, = i ( X 2 +  y’) +& 1 + X ) x 2 y 2  ( A . l c )  

V ,  = x4+ 6 x 2 y 2  + 8y4+ (1 + X ) ( X ’  + 4 ~ ‘ ) .  ( A . l d )  

The Hamiltonian H I  is almost entirely chaotic at energy EF= 1, for X between 0 and 
1, whereas H2 is quasi-integrable (most trajectories are on tori) at EF= 1. The Hamil- 
tonian H3 is exactly integrable for all values of X (Hietarinta 1984). 

In the simulations the parameter X was increased from 0 to 1, and then reversed, 
with the time dependence 

X ( t )  = exp(-t2/2t:). (A.2) 

For the chaotic Hamiltonian H,, I computed the change PET in the total energy of 
N = 2 x lo4 particles numerically for various values of the switching time t , ,  with the 
initial phase points distributed uniformly inside the energy shell EF = 1 .  Similar simula- 
tions were performed to evaluate (AE’),, the mean value of the square of the changes 
in the single-particle energies, for initial conditions uniformly distributed on the energy 
shell at EF= 1 ,  averaging over 100 or more trajectories in each case. The results are 
summarised in table 1. The weight of the energy shell, R,  and its volume F, were 
evaluated by Monte Carlo integration, using lo4 points: the values are listed in table 2. 

I considered three different Hamiltonians: 

For a chaotic system, the increase in the total energy of the system is 

AET = N R (  A E ’)F/ 2 ~ .  (A.3) 
This result follows from integrating (91, using the fact that the density of phase space 
points is N/ CL in this simulation. The values of A ET in table 1 agree with this theoretical 
prediction to within the expected statistical fluctuations, and with the prediction (see 
(A.4) below) that AET is proportional to l / t s ,  in the limit t,-,m. It was necessary to 
use a large number of particles to get satisfactory agreement with the theory for large 
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Table 1. Statistics describing the irreversible changes in energy caused by varying a 
parameter X, for various values of the timescale I, of X (  I). For an explanation see the 
appendix. 

I - I 
1 
2 
4 

- 
- 
- 

10 90.0 
20 76.6 
40 60.9 
80 36.7 

160 26.1 
320 - 

0.005 44 
0.005 32 
0.004 03 
0.002 39 
0.001 20 
0.000 66 

- 
0.0643 
0.0322 
0.0161 
0.008 1 
0.0040 
0.0020 

1.5 x 1 0 - ~  

1 . 2 ~  1 0 - ~  
L O X  1 0 - ~  
3.2 x 1 0 - ~  
1.2 x 1 0 - ~  
5.3 x lo- ”  
4.7 x 1 0 - l ~  

1 . 9 ~ 1 0 - ~  
6.0 x 1 0 - ~  
3 . o ~  1 0 - ~  
1.5 x 1 0 - ~  
1.5 x i o - *  
3.8 x i o - *  
1.5 x io -*  
1.5 x 
3.8 x 

1 . o ~  1 0 - ~  
3.3 x io-’  
2.0 x io-’ 

1.2 x 1 0 - ~  

1.1 x 1 0 - l ~  
4.5 x 10-l4 

5.8 x 

4.6 x l o - ”  
1.5 X lo- ’ ’  

0.354 
0.177 
0.089 
0.044 
0.018 
0.009 
4.4 x 1 0 - ~  
2.2 x 1 0 - ~  
1.1 x 1 0 - ~  

Table 2. Some phase-space integrals required for analysis of the data of table 1. For an 
explanation see the appendix. 

H2 H3 

P 51.4 19.5 3.65 
n 84.0 38.5 6.63 
CO 6.15 5.48 x 1 0 - ~  0.982 
Cg -1.33 -1.52 X lo-’ -8.61 

values of f s ,  because the mean change in the energy of each particle (which scales as 
t i ’ )  is small compared to its standard deviation (which scales as f ; ’ ” ) .  

In order to make a quantitative comparison between the ergodic and integrable 
systems, we must compare the values of (AE2), we observe for the integrable system 
with that expected for a comparable chaotic system (i.e. one with a similar correlation 
function). For a chaotic system the variance (AE’), is proportional to the integral over 
time of the diffusion constant: using (3) and (4) we have 

where CO and T are measures of the correlation function and its characteristic decay 
time, defined by: 

In the case of an integrable system, the integral in (AS)  which defines T may not 
converge, so a different characteristic time will be used as the basis for a comparison 
between the integrable and chaotic systems: this timescale T~ defined by 
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where Cg is the second time derivative of the correlation function at t = 0: 

C{=d2cit: t ,  I , =o={  d q d p ( g ) { { g ,  H } , H ) S ( E - H )  (A.7) 

( {A,  B }  is the Poisson bracket of A and B ) .  Both CO and Cg were evaluated by Monte 
Carlo integration (lo4 points), and their values are given in table 2 .  The columns in 
table 1 headed (AI?*),,, are estimates for (AE2)F obtained from (A.4), with T replaced 

are of the right order of magnitude for 
the ergodic system, but much too high for the systems with integrable or near-integrable 
motion, especially in the adiabatic limit where t ,  is large. This confirms the prediction 
that the irreversible energy changes caused by adiabatic perturbations are much smaller 
if the motion is integrable. 

by 70. 
It can be seen that the estimates 
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